Appendix F

Geotechnical Investigation Report

GEOTECHNICAL INVESTIGATION

PAUL HOBBS IRRIGATION RESERVOIR 11835 POCKET CANYON ROAD GUERNEVILLE, CALIFORNIA

11993.1

Prepared for

Paul Hobbs 3355 Gravenstein Highway North Sebastopol, CA 95472

Prepared by

BACE GEOTECHNICAL

A Division of Brunsing Associates, Inc. 5468 Skylane Blvd., Suite 201
Santa Rosa, CA 95403
(707) 528-6108

December 28, 2006

PROFESSIONAL PROFE

Keith A. Colorado Civil Engineer - 69011

ERIK E. OLSBORG
No. 1072
CERTIFIED
ENGINEERING
GEOLOGIST
THE PARTIE OF T

Erik E. Olsborg

Engineering Geologist – 1072

Gary I. Sitton

Geotechnical Engineer - 784

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS			
1.0	INTRODUCTION	1	
2.0	INVESTIGATION 2.1 Research and Reconnaissance 2.2 Field Exploration 2.3 Laboratory Testing	1 1 2 2	
3.0	SITE CONDITIONS	2	
4.0	SITE GEOLOGY AND SOILS	3	
5.0	FAULTING AND SEISMICITY	. 3	
6.0	DISCUSSIONS AND CONCLUSIONS 6.1 General 6.2 Weak, Porous, and Erodible Surface Soils 6.3 Excavatability 6.4 Seismic Hazards/Fault Rupture	3 3 4 4 4	
7.0	RECOMMENDATIONS 7.1 Site Preparation and Grading 7.2 Synthetic Liner 7.3 Rip Rap 7.4 Surface and Subsurface Drainage 7.5 Additional Services	4 4 5 5 6 6	
8.0	LIMITATIONS	6	
ILLU	JSTRATIONS	8	
DIST	RIBUTION	21	

LIST OF ILLUSTRATIONS

Vicinity Map	Plate 1
Site Geologic Map	Plate 2
Logs of Test Borings	Plates 3 and 4
Soil Classification Chart and Key to Test Data	Plate 5
Soil Descriptive Properties	Plate 6
Rock Descriptive Properties	Plate 7
Compaction Test Data	Plate 8
Summary of Flexible Wall Permeability Test Data	Plate 9
Keyway/Bench Drainage Detail	-Plate 10
Typical Trench Subdrain Detail	Plate 11

1.0 INTRODUCTION

This report presents the results of our Geotechnical Investigation for the planned Irrigation Reservoir at 11835 Pocket Canyon Road, Guerneville, California. The property, A.P.N. 085 140 001, is located on the west side of Pocket Canyon Road (Highway 116) approximately 1.8 miles southeast of the intersection of Pocket Canyon Road and River Road, as shown on the Vicinity Map, Plate 1.

Based on discussions with Glen Edwards of Ag Wood Forestry, and our review of preliminary plans dated Aug 29, 2002, by Erickson Engineering, we understand that the Irrigation Reservoir will have two earth-fill embankments, approximately 40 and 50 feet in height on the southwest and northeast sides, respectively. The reservoir bottom will be at an assumed elevation of 350 feet and the top of the embankment at an elevation of 360 feet. The embankment will have interior slopes of about two and one-half horizontal to one vertical (2.5H:1V), and exterior slopes of 2H:1V. The planned reservoir is shown on the Site Geologic Map, Plate 2.

The purpose of our investigation was to evaluate the site soil/rock conditions in order to determine project feasibility, and to provide geotechnical conclusions and recommendations regarding site grading, including embankment and compacted soil liner construction, suitability of on-site soils for use as liner material, and the need for subdrainage, keying and benching. The scope of our services, as outlined in our Service Agreement transmitted December 9, 2005, consisted of subsurface exploration, laboratory testing, geologic and engineering analyses, and the preparation of this report.

During our investigation, we discussed our preliminary findings with Erickson Engineering. Per these discussions, we understand that the reservoir will have a synthetic liner (and not a compacted soil liner).

2.0 INVESTIGATION

2.1 Research and Reconnaissance

As part of our investigation, we reviewed the following published geologic maps:

- Preliminary Geologic Map of Western Sonoma County and Northernmost Marin County, 1971, Basic Data Contribution 12, U. S. Geological Survey.
- Geology for Planning in Sonoma County, 1980, Special Report 120, California Division of Mines and Geology (CDMG).
- Geologic Map of the Sebastopol Quadrangle, 1951, Bulletin 162, CDMG.
- Geologic Map of the Santa Rosa Quadrangle, 1982, Map No. 2A, Regional Geologic Map Series, CDMG.

Our Principal Engineering Geologist, Erik Olsborg and Project Engineer, Keith Colorado, met Glen Edwards, owner's representative, to observe and discuss the proposed site

location, and performed a reconnaissance of the site on December 6, 2005. Our Principal Geotechnical Engineer observed the site on January 24, 2006.

2.2 Field Exploration

The field exploration consisted of drilling, logging, and sampling four test borings to depths ranging from 9.5 to 15.5 feet on January 24, 2006. The test borings were drilled with a track-mounted drill rig utilizing solid stem flight auger equipment. The locations of the test borings are shown on Plate 2.

Our Project Engineer logged the test borings and obtained loose bulk samples and relatively undisturbed tube samples of the soil and rock materials encountered for visual classification and laboratory testing. The relatively undisturbed tube samples were obtained by the drill rig using a 3-inch outside diameter Modified California split-barrel sampler, driven by a 140-pound drop hammer falling 30 inches per blow. Blows required to drive the sampler were converted to equivalent "Standard Penetration" blow counts, using a conversion factor of 0.64, for correlation with empirical test data. Sampler penetration resistance (blow counts) provides a relative measure of soil/rock consistency and strength.

The logs of the test borings showing the various soil and rock materials encountered and the depths, at which samples were obtained, are presented on Plates 3 and 4. The soils are classified in accordance with the Unified Soil Classification System outlined on Plate 5. The soil descriptive properties for soil classification are presented on Plate 6, and the rock descriptive properties used to describe the bedrock materials are presented on Plate 7.

2.3 Laboratory Testing

Selected samples were tested in our laboratory to determine their pertinent geotechnical engineering characteristics. Laboratory testing consisted of moisture content/dry density, maximum dry density (compaction), classification (No. 200 sieve), and remolded permeability (triaxial cell). Compaction test data and the permeability test results are presented on Plates 8 and 9, respectively.

3.0 SITE CONDITIONS

The site for the reservoir is located in the rolling hills southwest of Guerneville on the west side of Pocket Canyon. The site is currently unoccupied and is accessed by a graded gravel road from Pocket Canyon Road (Highway 116). The reservoir site is covered with a moderate growth of grass and abundant, large fir, and some hardwood trees. The planned reservoir is within a topographic saddle on a northwest-southeast trending ridge. The topographic saddle drains to the northeast and southwest. The northwest side of the reservoir site slopes gently to the southeast at about 7H:1V. The southeast side of the reservoir slopes gently to the northwest at about 8H:1V. The northeast side of the reservoir slopes is within a drainage swale that is moderately steep to steep to the

northeast at about 3H:1V. The southwest side of the reservoir slope is at the upper edge of a ridge side that slopes steeply to the southwest at 2.3H:1V.

4.0 SITE GEOLOGY AND SOILS

The site bedrock consists of sandstone of the Cretaceous-Jurassic Franciscan Complex. The sandstone encountered in the test borings is crushed to intensely fractured, friable to low hardness, and deeply to little weathered. No bedding orientation was observed within the Franciscan Complex rocks.

The bedrock at the reservoir site is covered with about 3 to 6.5 feet of silty sand, gravelly/sandy silt to sandy clay. These soils are medium dense, soft to medium stiff, porous and contain roots; porous soils are subject to collapse when loaded in a saturated condition.

Review of published map Special Report 120 Plate 2B Slope Stability shows a possible landslide in the area. However, our boring logs in conjunction with our reconnaissance, found no evidence that there is a landslide within the area of the planned irrigation reservoir.

5.0 FAULTING AND SEISMICITY

No evidence of faulting was observed at the site, and none of the published geologic maps that we reviewed show faults in the reservoir area. The nearest active faults are the San Andreas and Rodgers Creek Faults, located approximately 10 miles southwest and 11 miles northeast of the property, respectively.

Sonoma County is within a zone of seismic activity associated with the active San Andreas and Rodgers Creek Faults. Future damaging earthquakes could occur on these faults during the lifetime of the proposed development. In general, the intensity of ground shaking at the site will depend on the distance to the causative earthquake epicenter, the magnitude of the shock, and the response characteristics of the underlying earth materials.

6.0 DISCUSSIONS AND CONCLUSIONS

6.1 General

Based on the results of our field exploration and laboratory testing, we conclude that the site is geotechnically suitable for the planned reservoir. The main geotechnical constraints that should be considered in design and construction for the reservoir include the presence of weak and porous surface soils and strong seismic shaking from future earthquakes. These considerations and possible mitigation measures are discussed below along with other specific aspects of this project.

6.2 Weak, Porous, and Erodible Surface Soils

The weak and porous surface soils will collapse under embankment fill loads, and will be erodible where exposed in cut areas. Therefore, these soils should be removed and replaced as properly compacted fill within embankment areas and within reservoir cut areas where not removed by planned excavation. The interception and control of surface and subsurface water is also important in mitigation of potential erosion.

6.3 Excavatability

Considering our observation of drill rig performance at the site, and our experience in the area, we conclude that the majority of planned excavations can be achieved using conventional heavy excavation equipment, such as a Caterpillar D8R tractor, or equivalent, equipped with ripper teeth.

6.4 Seismic Hazards/Fault Rupture

The proposed reservoir will be subject to strong ground shaking from future earthquakes. With the embankment founded upon rock, and with interior and exterior slopes of 2.5H:1V and 2H:1V, respectively, the embankment should be well suited to resist the effects of ground shaking. Since no active faults were found or are shown on published references in the site vicinity, the possibility of fault rupture is considered low.

7.0 RECOMMENDATIONS

7.1 Site Preparation and Grading

Areas to be graded should be cleared of debris and surface vegetation and stripped to remove surface soils containing roots. We anticipate the depth of stripping would generally be about four to six inches. Deeper stripping and grubbing may be required to remove concentrations of organic matter. The cleared materials should be removed from the site; however, strippings can be stockpiled for later use as topsoil.

The reservoir embankments should be founded on supporting rock; therefore, the upper weak and porous surface soils (average of 3 to 6.5 feet in thickness, may be thicker in some areas) should be removed from embankment areas and the zone extending at least five feet beyond the exterior embankment toes. The excavated soils, minus remaining organic matter and over-size rocks (greater than six inches in largest dimension), can be stockpiled for later use as embankment fill material.

Fill placed upon existing slopes should be keyed and benched into firm, weathered rock. The downstream embankment toes should be supported by keyways excavated into firm rock. The keyways should be equipment width (10 to 12 feet), and extend at least two feet into crushed, friable to low hardness rock on the downstream side. A subdrain will be needed within the keyway, as determined by BACE during the excavation process.

The subdrain should be constructed in accordance with the Keyway Drainage Detail, Plate 10.

Within reservoir cut areas where not removed by planned excavation, weak-porous or soft soils should be removed. After planned excavations are completed and weak-porous soils are removed, the exposed soils should be scarified to at least 6 inches in depth, moisture conditioned to (and maintained at) a uniform moisture content at least 2 percent above optimum moisture content, and compacted to at least 90 percent relative compaction (RC). Embankment fill materials should be placed in horizontal layers eight inches or less in loose thickness, moisture conditioned to (and be maintained) at least 2 percent above optimum moisture content, and compacted to at least 90 percent RC, using self-propelled compactors or sheepsfoot rollers. Smooth-wheel rollers should not be used except for final subgrade preparation.

The downstream slope of the embankment should be inclined no steeper than 2H:1V, preferably at 2-1/2H:1V. The upstream face of the embankment should be inclined no steeper than 2-1/2H:1V, preferably at 3H:1V. Fill slopes should be compacted by rolling and trimming, or overfilled and trimmed back to planned grade, to expose a firm, smooth surface free of loose material. Slopes should be planted with vegetation (or protected from erosion by other measures) upon completion of grading.

7.2 Synthetic Liner

The synthetic liner should be at least 60 millimeters in thickness high-density polyethylene (HDPE). The liner should be installed, and each joint penetration sealed, per the manufacturer's recommended procedures. If no other requirement is provided, the edges should be overlap at least 24 inches. The liner installation should be observed and tested in accordance with the manufacturer's requirements.

The liner could be punctured if placed on rock containing angular fractures. Therefore, fractured rock exposed on the reservoir sides and bottom should be over excavated and replaced with compacted (at least 90 percent RC) on-site material, at least 8 inches in thickness. If the synthetic liner is not installed, BACE should be retained to provide recommendations for a compacted (imported) soil liner.

7.3 Rip Rap

If used, such as at outlets for spillway or over-flow pipe, the riprap section should be about two-feet thick and placed over geotextile filter fabric (Mirafi 700X, or equivalent). Riprap rock should be sound, and resistant to abrasion and reasonably free from cracks, seams, and other defects that would tend to increase unduly their destruction by water action. Riprap rock should be between six inches and two feet in size and carefully fitted together to provide a tight interlock.

7.4 Surface and Subsurface Drainage

Surface water runoff should be intercepted and directed away from the top and toe of cut and fill slopes. Drainage ways should be maintained free of debris to prevent water from eroding along the top or toe of the slopes.

Depending upon the time of year, ground water seepage may be encountered during embankment excavation operations. Excessive seepage may occur within the northwesterly cut slope during the winter-spring months. As a precaution, an uphill subdrain is suggested, as shown on Plate 11.

Surface and subsurface water should be collected in solid pipes and outletted into the existing or established drainage system(s) on site. Alternatively, the collected water can be directed to (by gravity) or pumped into the reservoir.

7.5 Additional Services

Prior to construction, BACE should review the final grading and reservoir construction plans, and related specifications, for conformance with our recommendations. During construction, BACE should be retained to provide periodic observations, together with field and laboratory testing, during site preparation, keyway excavation, subdrain installation, placement and compaction of fills for embankment construction and liner installation. Reservoir excavations should be reviewed by BACE while the excavation operations are being performed. Our observations and tests will allow us to verify conformance of the work to project guidelines, determine that soil conditions are as anticipated, and to modify our recommendations, if necessary.

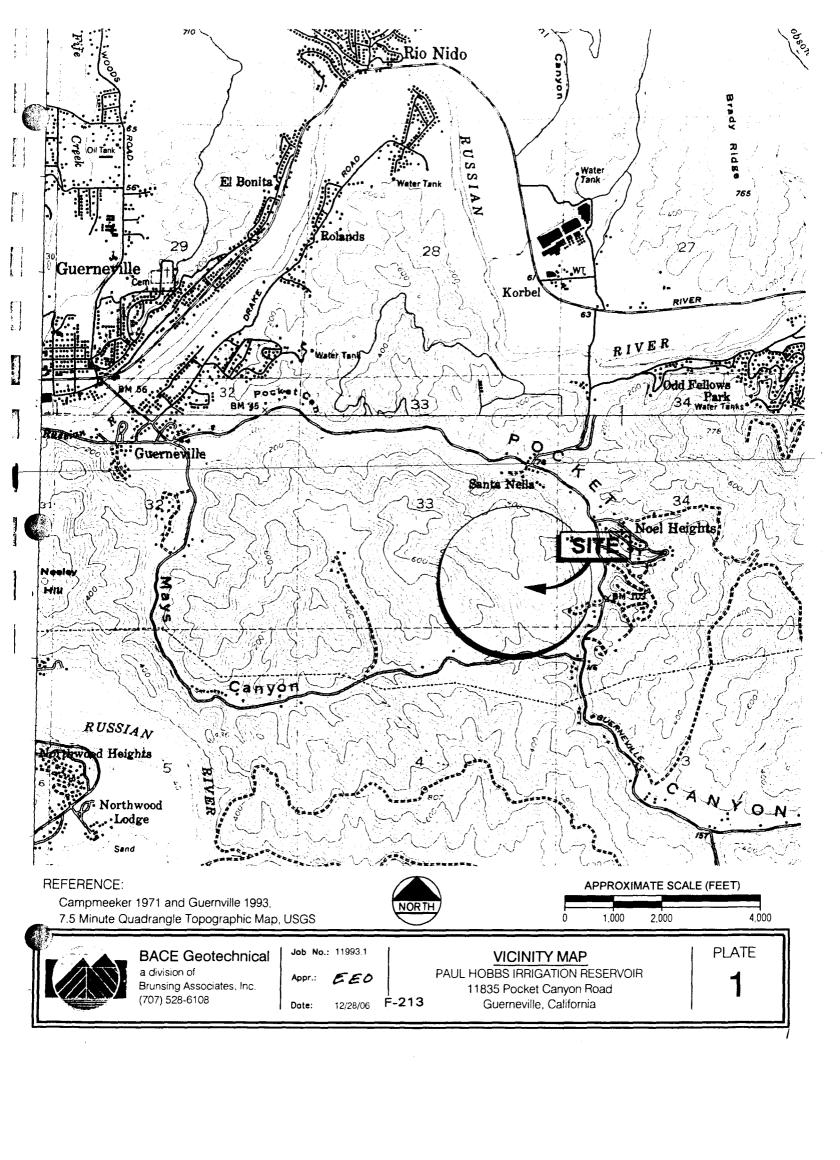
8.0 LIMITATIONS

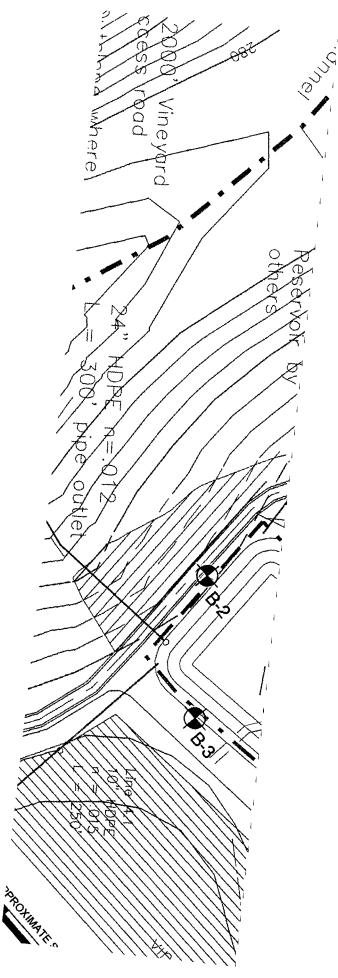
This geotechnical investigation and review of the proposed reservoir development were performed in accordance with the usual and current standards of the profession, as they relate to this and similar localities. No other warranty, expressed or implied, is provided as to the conclusions and professional advice presented in this report. Our conclusions are based upon reasonable geologic and engineering interpretation of available data. A soil corrosion study was not included in our scope of services for this project.

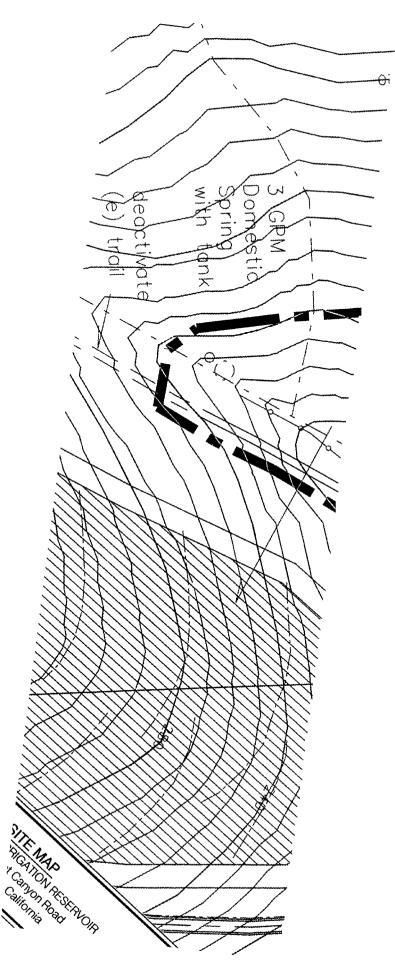
The samples taken and tested, and the observations made, are considered to be representative of the site; however, soil and geologic conditions may vary significantly between test borings and across the site. As in most projects, conditions revealed during construction excavation may be at variance with preliminary findings. If this occurs, the changed conditions must be evaluated by BACE and revised recommendations be provided as required.

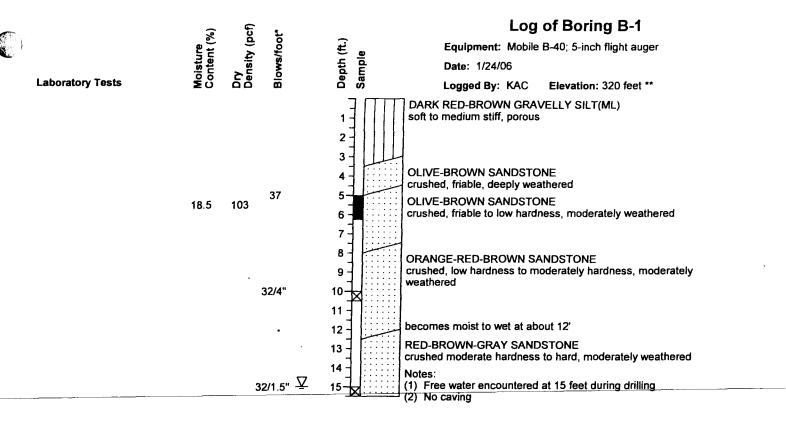
This report is issued with the understanding that it is the responsibility of the owner, or of his/her representative, that the information and recommendations contained herein are brought to the attention of all other design professionals for the project, and incorporated

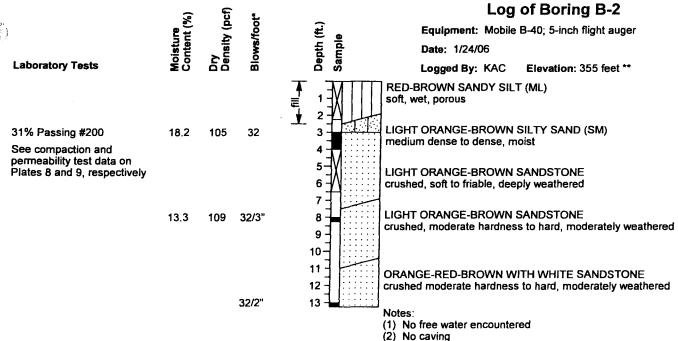
into the plans, and the Contractor and Subcontractors implement such recommendations in the field. The safety of others is the responsibility of the Contractor. The Contractor should notify the Owner and BACE if he/she considers any of the recommended actions presented herein to be unsafe or otherwise impractical.


Changes to the conditions of a site can occur with the passage of time, whether they are due to natural events or to human activities on this, or adjacent sites. In addition, changes in applicable or appropriate codes and standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, this report may become invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and revision as changed conditions are identified.


The recommendations contained in this report are based on certain specific project information regarding type of construction and reservoir location, which has been made available to us. If any conceptual changes are undertaken during final project design, we should be allowed to review them in light of this report to determine if our recommendations are still applicable.




ILLUSTRATIONS

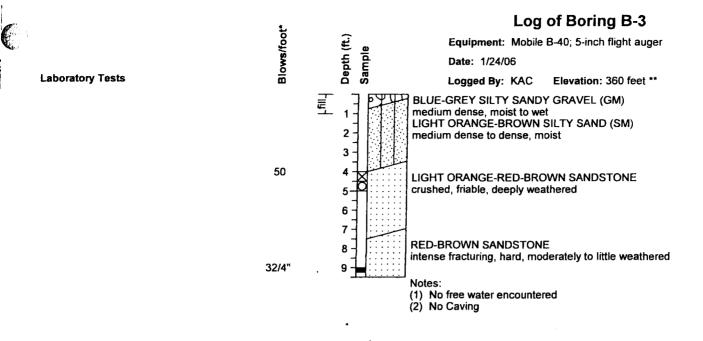


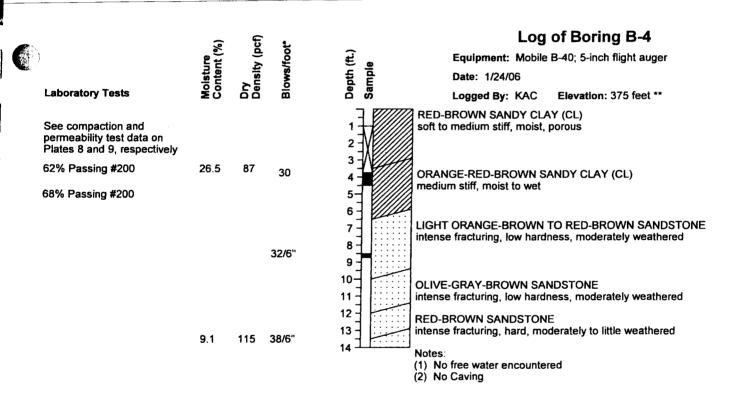
* Equivalent "Standard Penetration" Blow Counts.
** Elevations interpolated from Plate 2.

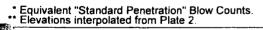
a division of

(707) 528-6108

BACE GEOTECHNICAL


Brunsing Associates, Inc.


Job No. 11993.1 LOGS O
PAUL HO
Appr: EEO 118
Date: 12/28/06 F-215


PAUL HOBBS IRRIGATION RESERVOIR
11835 Pocket Canyon Road
Guerneville, California

PLATE

Scale: 1" = 5'

Scale: 1" = 5'

BACE GEOTECHNICAL a division of Brunsing Associates, Inc. (707) 528-6108 Job No 11993.1

Appr: EEO

Date: 12/28/06

F-216

LOGS OF BORINGS B-3 AND B-4

PAUL HOBBS IRRIGATION RESERVOIR 11835 Pocket Canyon Road Guerneville, California **PLATE**

	MAJOR DIVISIONS			SYMBOLS		TYPICAL	
				GRAPH	LETTER	DESCRIPTIONS	
	COARSE- GRAINED SOILS	GRAVELS AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES	
		GRAVELLY SOILS	(Little or no fines)		GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES	
(SOS)		MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES	
SU) N			(Appreciable amount of fines)		GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES	
SYSTEM (USCS)	MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	SAND AND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	
		SANDY SOILS 50% OR MORE OF COARSE FRACTION PASSING THROUGH NO. 4 SIEVE	(Little or no fines)		SP	POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	
LASSIFICATION			SANDS WITH FINES		SM	SILTY SANDS, SAND-SILT MIXTURES	
SIFIC			(Appreciable amount of fines)		sc	CLAYEY SANDS, SAND-CLAY MIXTURES	
LAS					ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY	
UNIFIED SOIL C	FINE- GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
					OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
	MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		мн	INORGANIC SILT, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS	
					СН	INORGANIC CLAYS OF HIGH PLASTICITY	
					ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	
	HIC	SHLY ORGANIC SO	ils	7 77 7 77 77	PT	PEAT, HUMOUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	

KEY TO TEST DATA

Consol - Consolidation

LL - Liquid Limit

PI - Plasticity Index

EI - Expansion Index

SA - Sieve Analysis

Sample Retained

Sample Recovered, Not Retained

Bulk Sample

Sample Not Recovered

Shear Strength, psf $_1$ Confining Pressure, psf

Tx 320 (2600) - Unconsolidated Undrained Triaxial

TxCU 320 (2600) - Consolidated Undrained Triaxial

DS 2750 (2600) - Consolidated Drained Direct Shear

FVS 470

- Field Vane Shear

UC 2000

- Unconfined Compression

PP 2000

- Field Pocket Penetrometer

Sat

- Sample saturated prior to test

☑ Ground Water Level During Exploration ☑ Stabilized Ground Water Level

BACE GEOTECHNICAL a division of Brunsing Associates, Inc. (707) 528-6108 Job No

Appr

11993.1

). I

EEO

Date 12/28/06

1

F-217

SOIL CLASSIFICATION CHART & KEY TO TEST DATA

PAUL HOBBS IRRIGATION RESERVOIR 11835 Pocket Canyon Road Guerneville, California PLATE

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

RELATIVE DENSITY OF COARSE-GRAINED SOILS

Relative Density

Standard Penetration Test Blow Count (blows per foot)

Very loose Loose Medium dense Dense Very dense 4 or less 5 to 10 11 to 30 31 to 50 More than 50

CONSISTENCY OF FINE-GRAINED SOILS

Consistency

Identification Procedure

Approximate Shear Strength (psf)

Very soft
Soft
Medium stiff
Stiff
Very stiff
Hard

Easily penetrated several inches with fist
Easily penetrated several inches with thumb
Penetrated several inches by thumb with moderate effort
Readily indented by thumb, but penetrated only with great effort
Readily indented by thumb nail
indented with difficulty by thumb nail

250 to 500 500 to 1000 1000 to 2000 2000 to 4000 More than 4000

Less than 250

NATURAL MOISTURE CONTENT

Dry

No noticeable moisture content. Requires considerable moisture to obtain optimum

moisture content* for compaction.

Damp

Contains some moisture, but is on the dry side of optimum.

Moist

Near optimum moisture content for compaction.

Wet

Requires drying to obtain optimum moisture content for compaction.

Saturated

Near or below the water table, from capillarity, or from perched or ponded water. All

void spaces filled with water.

Where laboratory test data are not available, the above field classifications provide a general indication of material properties; the classifications may require modification based upon laboratory tests.

BACE GEOTECHNICAL a division of Brunsing Associates, Inc. (707) 528-6108 Job No. 11993.1

Appr: EEO

Date 12/28/06

SOIL DESCRIPTIVE PROPERTIES

PAUL HOBBS IRRIGATION RESERVOIR
11835 Pocket Canyon Road
F-218 Guerneville, California

PLATE

^{*} Optimum moisture content as determined in accordance with ASTM Test Method D1557, latest edition.

Generalized Graphic Rock Symbols

Tuff (Volcanic Ash) Siltstone Claystone Chert Shale **Andesite** Sandstone Serpentine **Basalt** Granite Conglomerate Metamorphic Rock

Stratification

Bedding of Sedimentary Rocks

Massive Very thick bedded Thick bedded Thin bedded Very thin bedded Laminated Thinly laminated

Thickness of Beds No apparent bedding Greater than 4 feet 2 feet to 4 feet 2 inches to 2 feet 0.5 inches to 2 inches 0.125 inches to 0.5 inches less than 0.125 inches

Fracturing

Fracturing Intensity

Little Occasional Moderate Close Intense Crushed

Thickness of Beds Greater than 4 feet 1 foot to 4 feet 6 inches to 1 foot 1 inch to 6 inches 0.5 inches to 1 inch less than 0.5 inches

Strength

Soft Friable Plastic or very low strength.

Low hardness

Crumbles by hand. Crumbles under light hammer blows.

Moderate hardness

Crumbles under a few heavy hammer blows.

Hard Very hard Breaks into large pieces under heavy, ringing hammer blows. Resists heavy, ringing hammer blows and will yield with

difficulty only dust and small flying fragments.

Weathering

Deep

Moderate to complete mineral decomposition, extensive disintegration, deep and thorough discoloration, many extensively coated fractures.

Moderate

Slight decomposition of minerals, little disintegration, moderate discoloration,

moderately coated fractures.

Little

No megascopic decomposition of minerals, slight to no effect on cementation, slight and intermittent, or localized discoloration, few stains on fracture surfaces.

Fresh

Unaffected by weathering agents, no disintegration or discoloration, fractures

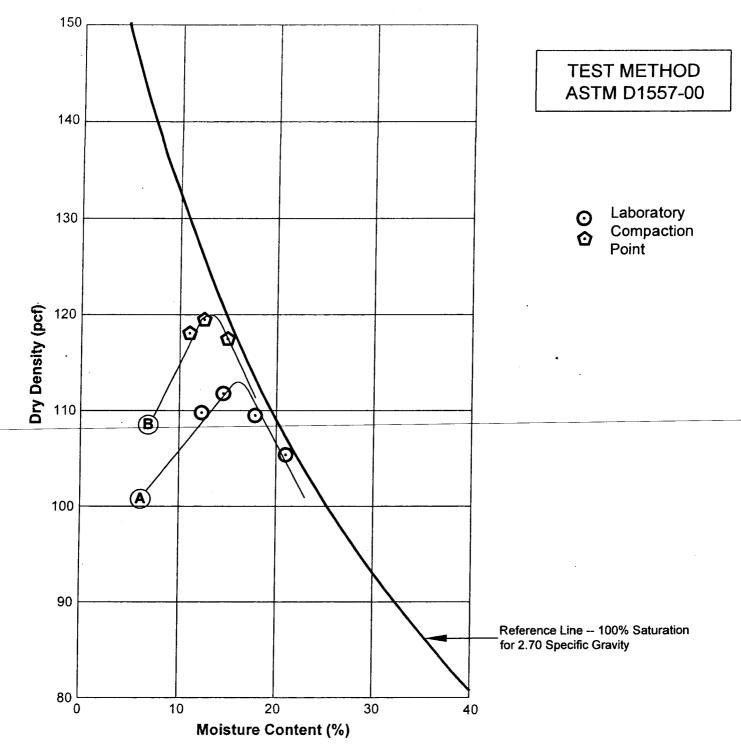
usually less numerous than joints

BACE GEOTECHNICAL a division of Brunsing Associates, Inc. (707) 528-6108

Job No

Appr EEO

11993.1


12/28/06

F-219

ROCK DESCRIPTIVE PROPERTIES

PAUL HOBBS IRRIGATION RESERVOIR 11835 Pocket Canyon Road Guerneville, California

PLATE

Symbol	Sample Source	Classification	Optimum Moisture (%)	Maximum Dry Density (pcf)
(A) (O)	Boring B-4 at 1-4 feet	RED-BROWN CLAYEY SAND (SC)	16.0	113
B ⊘	Boring B-2 at 3-6.5 feet	LIGHT ORANGE-BROWN SANDSTONE	13.5	120

BACE Geotechnical

a division of Brunsing Associates, Inc. (707) 528-6108 Job No.: 11993.1

Appr.: EEO

Date: 12/28/06

COMPACTION TEST DATA

PAUL HOBBS IRRIGATION RESERVOIR
11835 Pocket Canyon Road
F-220 Guerneville, California

PLATE

Sample Source	Classification	(1) Remolded Dry Density (pcf)	(1) Remolded Moisture Content (%)	(2) Permeability (cm/sec.)	Percent Passing No.200 Sieve
Boring B-4 at 1-4 feet RED-BROWN SANDY CLAY (CL)		102	20.8	6x10 ⁻⁸	65
B Boring B-2 at 3-6.5 feet	LIGHT ORANGE-BROWN SANDSTONE	108	15.2	1x10 ⁻⁶	31

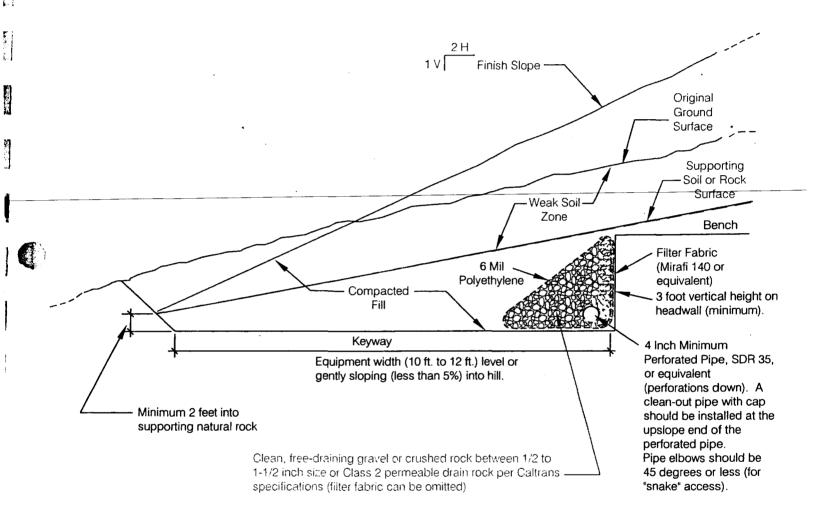
NOTES:

- (1) Sample remolded to about 90% relative compaction and about 2 to 4% over optimum moisture content based on laboratory compaction test performed in accordance with the ASTM D-1557-00 test method; see compaction data on Plate 8.
- (2) Permeability tests performed in accordance with ASTM D-5084.

BACE Geotechnical a division of Brunsing Associates, Inc. (707) 528-6108 Job No.: 11993.1

Appr.: EEO

Dote: 12/28/06


SUMMARY OF FLEXIBLE WALL
PERMEABILITY TEST DATA

PAUL HOBBS IRRIGATION RESERVOIR 11835 Pocket Canyon Road

F-221

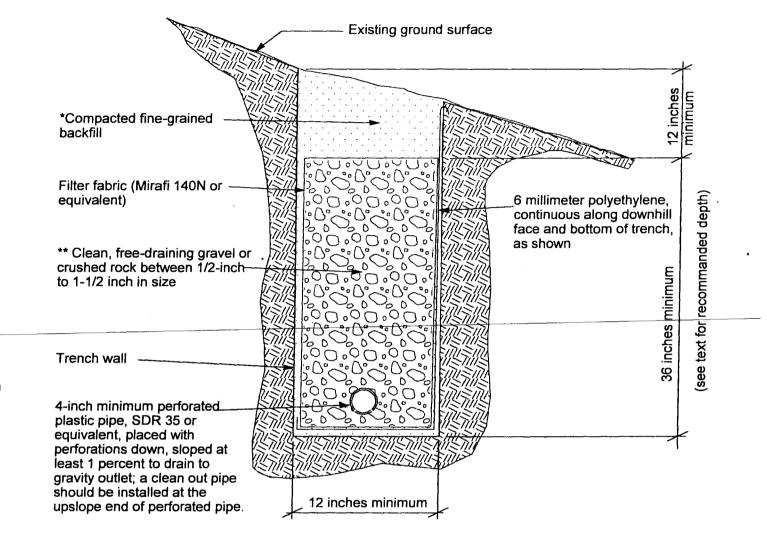
1835 Pocket Canyon Road Guerneville, California **PLATE**

(NOT TO SCALE)

BACE Geotechnical

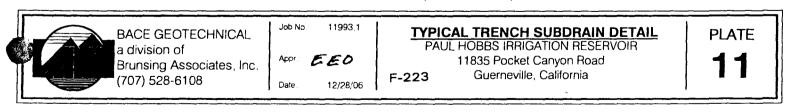
a division of Brunsing Associates, Inc. (707) 528-6108 Job No.: 11993.1

Appr.: EEO


Dote: 12/28/06

KEYWAY/BENCH DRAINAGE DETAIL

PAUL HOBBS IRRIGATION RESERVOIR
11835 Pocket Canyon Road
2 Guerneville, California


F-222

PLATE

TYPICAL SECTION NO SCALE

- * 90 percent relative compaction minimum in accordance with ASTM D 1557 Test Method, latest edition.
- ** Or, as an alternative, use Class 2 Permeable Material per Caltrans specifications.

DISTRIBUTION

Four Copies

Paul Hobbs

3355 Gravenstein Highway North

Sebastopol, CA 95472

One Copy

Glen Edwards, R.P.F. Ag Wood Forestry P.O. Box 997 Ukiah, CA 95482

One Copy

Lee Erickson, P.E. Erickson Engineering

P.O. Box 446

Valley Ford, CA 94972-0446

